In this tutorial we showed you how to implement your own planning and learning algorithms. Although these algorithms were simple, they exposed the necessary BURLAP tools and mechanisms you will need to use to implement your own algorithms and should enable you to start writing your own code. In general, we highly recommend that you use BURLAP's existing implementations of Value Iteration and Q-Learning since they support a number of other features (Options, learning rate decay schedules, etc.). If you would like to see all of the code that was written in this tutorial, we have provided it below (first the Value Iteration code, then the Q-learning Code).
import java.util.ArrayList; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import burlap.behavior.singleagent.EpisodeAnalysis; import burlap.behavior.singleagent.Policy; import burlap.behavior.singleagent.QValue; import burlap.behavior.singleagent.ValueFunctionInitialization; import burlap.behavior.singleagent.planning.OOMDPPlanner; import burlap.behavior.singleagent.planning.QComputablePlanner; import burlap.behavior.singleagent.planning.commonpolicies.GreedyQPolicy; import burlap.behavior.statehashing.DiscreteStateHashFactory; import burlap.behavior.statehashing.StateHashFactory; import burlap.behavior.statehashing.StateHashTuple; import burlap.domain.singleagent.gridworld.GridWorldDomain; import burlap.domain.singleagent.gridworld.GridWorldTerminalFunction; import burlap.oomdp.core.AbstractGroundedAction; import burlap.oomdp.core.Domain; import burlap.oomdp.core.State; import burlap.oomdp.core.TerminalFunction; import burlap.oomdp.core.TransitionProbability; import burlap.oomdp.singleagent.GroundedAction; import burlap.oomdp.singleagent.RewardFunction; import burlap.oomdp.singleagent.common.UniformCostRF; public class VITutorial extends OOMDPPlanner implements QComputablePlanner { protected Map<StateHashTuple, Double> valueFunction; protected ValueFunctionInitialization vinit; protected int numIterations; public VITutorial(Domain domain, RewardFunction rf, TerminalFunction tf, double gamma, StateHashFactory hashingFactory, ValueFunctionInitialization vinit, int numIterations){ this.plannerInit(domain, rf, tf, gamma, hashingFactory); this.vinit = vinit; this.numIterations = numIterations; this.valueFunction = new HashMap<StateHashTuple, Double>(); } @Override public List<QValue> getQs(State s) { List<GroundedAction> applicableActions = this.getAllGroundedActions(s); List<QValue> qs = new ArrayList<QValue>(applicableActions.size()); for(GroundedAction ga : applicableActions){ qs.add(this.getQ(s, ga)); } return qs; } @Override public QValue getQ(State s, AbstractGroundedAction a) { //type cast to the type we're using GroundedAction ga = (GroundedAction)a; //what are the possible outcomes? List<TransitionProbability> tps = ga.action.getTransitions(s, ga.params); //aggregate over each possible outcome double q = 0.; for(TransitionProbability tp : tps){ //what is reward for this transition? double r = this.rf.reward(s, ga, tp.s); //what is the value for the next state? double vp = this.valueFunction.get(this.hashingFactory.hashState(tp.s)); //add contribution weighted by transition probabiltiy and //discounting the next state q += tp.p * (r + this.gamma * vp); } //create Q-value wrapper QValue qValue = new QValue(s, ga, q); return qValue; } protected double bellmanEquation(State s){ if(this.tf.isTerminal(s)){ return 0.; } List<QValue> qs = this.getQs(s); double maxQ = Double.NEGATIVE_INFINITY; for(QValue q : qs){ maxQ = Math.max(maxQ, q.q); } return maxQ; } @Override public void planFromState(State initialState) { StateHashTuple hashedInitialState = this.hashingFactory.hashState(initialState); if(this.valueFunction.containsKey(hashedInitialState)){ return; //already performed planning here! } //if the state is new, then find all reachable states from it first this.performReachabilityFrom(initialState); //now perform multiple iterations over the whole state space for(int i = 0; i < this.numIterations; i++){ //iterate over each state for(StateHashTuple sh : this.valueFunction.keySet()){ //update its value using the bellman equation this.valueFunction.put(sh, this.bellmanEquation(sh.s)); } } } @Override public void resetPlannerResults() { this.valueFunction.clear(); } public void performReachabilityFrom(State seedState){ StateHashTuple hashedSeed = this.hashingFactory.hashState(seedState); //mark our seed state as seen and set its initial value function value this.valueFunction.put(hashedSeed, this.vinit.value(hashedSeed.s)); LinkedList<StateHashTuple> open = new LinkedList<StateHashTuple>(); open.offer(hashedSeed); while(open.size() > 0){ //pop off a state and expand it StateHashTuple sh = open.poll(); //which actions can be applied on this state? List<GroundedAction> appliactionActions = this.getAllGroundedActions(sh.s); //for each action... for(GroundedAction ga : appliactionActions){ //what are the possible outcomes? List<TransitionProbability> tps = ga.action.getTransitions(sh.s, ga.params); //for each possible outcome... for(TransitionProbability tp : tps){ //add previously unseed states to our open queue and //set their initial value function StateHashTuple shp = this.hashingFactory.hashState(tp.s); if(!this.valueFunction.containsKey(shp)){ this.valueFunction.put(shp, this.vinit.value(shp.s)); open.offer(shp); } } } } } public static void main(String [] args){ GridWorldDomain gwd = new GridWorldDomain(3, 3); gwd.setMapToFourRooms(); //only go in intended directon 80% of the time gwd.setProbSucceedTransitionDynamics(0.8); Domain domain = gwd.generateDomain(); //get initial state with agent in 0,0 State s = GridWorldDomain.getOneAgentNoLocationState(domain); GridWorldDomain.setAgent(s, 0, 0); //all transitions return -1 RewardFunction rf = new UniformCostRF(); //terminate in top right corner TerminalFunction tf = new GridWorldTerminalFunction(10, 10); //setup vi with 0.99 discount factor, discrete state hashing factory, a value //function initialization that initializes all states to value 0, and which will //run for 30 iterations over the state space VITutorial vi = new VITutorial(domain, rf, tf, 0.99, new DiscreteStateHashFactory(), new ValueFunctionInitialization.ConstantValueFunctionInitialization(0.0), 30); //run planning from our initial state vi.planFromState(s); //get the greedy policy from it Policy p = new GreedyQPolicy(vi); //evaluate the policy with one roll out and print out the action sequence EpisodeAnalysis ea = p.evaluateBehavior(s, rf, tf); System.out.println(ea.getActionSequenceString("\n")); } }
import java.util.ArrayList; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import burlap.behavior.singleagent.EpisodeAnalysis; import burlap.behavior.singleagent.Policy; import burlap.behavior.singleagent.QValue; import burlap.behavior.singleagent.ValueFunctionInitialization; import burlap.behavior.singleagent.learning.LearningAgent; import burlap.behavior.singleagent.planning.OOMDPPlanner; import burlap.behavior.singleagent.planning.QComputablePlanner; import burlap.behavior.singleagent.planning.commonpolicies.EpsilonGreedy; import burlap.behavior.singleagent.planning.commonpolicies.GreedyQPolicy; import burlap.behavior.statehashing.DiscreteStateHashFactory; import burlap.behavior.statehashing.StateHashFactory; import burlap.behavior.statehashing.StateHashTuple; import burlap.domain.singleagent.gridworld.GridWorldDomain; import burlap.domain.singleagent.gridworld.GridWorldTerminalFunction; import burlap.oomdp.core.AbstractGroundedAction; import burlap.oomdp.core.Domain; import burlap.oomdp.core.State; import burlap.oomdp.core.TerminalFunction; import burlap.oomdp.singleagent.GroundedAction; import burlap.oomdp.singleagent.RewardFunction; import burlap.oomdp.singleagent.common.UniformCostRF; public class QLTutorial extends OOMDPPlanner implements QComputablePlanner, LearningAgent { protected Map<StateHashTuple, List<QValue>> qValues; protected ValueFunctionInitialization qinit; protected double learningRate; protected Policy learningPolicy; protected LinkedList<EpisodeAnalysis> storedEpisodes = new LinkedList<EpisodeAnalysis>(); protected int maxStoredEpisodes = 1; public QLTutorial(Domain domain, RewardFunction rf, TerminalFunction tf, double gamma, StateHashFactory hashingFactory, ValueFunctionInitialization qinit, double learningRate, double epsilon){ this.plannerInit(domain, rf, tf, gamma, hashingFactory); this.qinit = qinit; this.learningRate = learningRate; this.qValues = new HashMap<StateHashTuple, List<QValue>>(); this.learningPolicy = new EpsilonGreedy(this, epsilon); } @Override public EpisodeAnalysis runLearningEpisodeFrom(State initialState) { return this.runLearningEpisodeFrom(initialState, -1); } @Override public EpisodeAnalysis runLearningEpisodeFrom(State initialState, int maxSteps) { //initialize our episode analysis object with the given initial state EpisodeAnalysis ea = new EpisodeAnalysis(initialState); //behave until a terminal state or max steps is reached State curState = initialState; int steps = 0; while(!this.tf.isTerminal(curState) && (steps < maxSteps || maxSteps == -1)){ //select an action AbstractGroundedAction a = this.learningPolicy.getAction(curState); //take the action and observe outcome State nextState = a.executeIn(curState); double r = this.rf.reward(curState, (GroundedAction)a, nextState); //record result ea.recordTransitionTo((GroundedAction)a, nextState, r); //update the old Q-value QValue oldQ = this.getQ(curState, a); oldQ.q = oldQ.q + this.learningRate * (r + (this.gamma * this.maxQ(nextState) - oldQ.q)); //move on to next state curState = nextState; steps++; } while(this.storedEpisodes.size() >= this.maxStoredEpisodes){ this.storedEpisodes.poll(); } this.storedEpisodes.offer(ea); return ea; } @Override public EpisodeAnalysis getLastLearningEpisode() { return this.storedEpisodes.getLast(); } @Override public void setNumEpisodesToStore(int numEps) { this.maxStoredEpisodes = numEps; while(this.storedEpisodes.size() > this.maxStoredEpisodes){ this.storedEpisodes.poll(); } } @Override public List<EpisodeAnalysis> getAllStoredLearningEpisodes() { return this.storedEpisodes; } @Override public List<QValue> getQs(State s) { //first get hashed state StateHashTuple sh = this.hashingFactory.hashState(s); //check if we already have stored values List<QValue> qs = this.qValues.get(sh); //create and add initialized Q-values if we don't have them stored for this state if(qs == null){ List<GroundedAction> actions = this.getAllGroundedActions(s); qs = new ArrayList<QValue>(actions.size()); //create a Q-value for each action for(GroundedAction ga : actions){ //add q with initialized value qs.add(new QValue(s, ga, this.qinit.qValue(s, ga))); } //store this for later this.qValues.put(sh, qs); } return qs; } @Override public QValue getQ(State s, AbstractGroundedAction a) { //first get all Q-values List<QValue> qs = this.getQs(s); //translate action parameters to source state for Q-values if needed a = a.translateParameters(s, qs.get(0).s); //iterate through stored Q-values to find a match for the input action for(QValue q : qs){ if(q.a.equals(a)){ return q; } } throw new RuntimeException("Could not find matching Q-value."); } protected double maxQ(State s){ if(this.tf.isTerminal(s)){ return 0.; } List<QValue> qs = this.getQs(s); double max = Double.NEGATIVE_INFINITY; for(QValue q : qs){ max = Math.max(q.q, max); } return max; } @Override public void planFromState(State initialState) { throw new UnsupportedOperationException("We are not supporting planning for this tutorial."); } @Override public void resetPlannerResults() { this.qValues.clear(); } public static void main(String [] args){ GridWorldDomain gwd = new GridWorldDomain(3, 3); gwd.setMapToFourRooms(); //only go in intended directon 80% of the time gwd.setProbSucceedTransitionDynamics(0.8); Domain domain = gwd.generateDomain(); //get initial state with agent in 0,0 State s = GridWorldDomain.getOneAgentNoLocationState(domain); GridWorldDomain.setAgent(s, 0, 0); //all transitions return -1 RewardFunction rf = new UniformCostRF(); //terminate in top right corner TerminalFunction tf = new GridWorldTerminalFunction(10, 10); //setup Q-learning with 0.99 discount factor, discrete state hashing factory, a value //function initialization that initializes all Q-values to value 0, a learning rate //of 0.1 and an epsilon value of 0.1. QLTutorial ql = new QLTutorial(domain, rf, tf, 0.99, new DiscreteStateHashFactory(), new ValueFunctionInitialization.ConstantValueFunctionInitialization(1.), 0.1, 0.1); //run learning for 1000 episodes for(int i = 0; i < 1000; i++){ EpisodeAnalysis ea = ql.runLearningEpisodeFrom(s); System.out.println("Episode " + i + " took " + ea.numTimeSteps() + " steps."); } //get the greedy policy from it Policy p = new GreedyQPolicy(ql); //evaluate the policy with one roll out and print out the action sequence EpisodeAnalysis ea = p.evaluateBehavior(s, rf, tf); System.out.println(ea.getActionSequenceString("\n")); } }